Riemann-Roch, Stability and New Non-Abelian Zeta Functions for Number Fields

نویسنده

  • Lin WENG
چکیده

Let F be a number field with discriminant ∆F . Denote its (normalized) absolute values by SF , and write SF = Sfin · ∪ S∞, where S∞ denotes the collection of all archimedean valuations. For simplicity, we use v (resp. σ) to denote elements in Sfin (resp. S∞). Denote by A = AF the ring of adeles of F , by Glr(A) the rank r general linear group over A, and write A := Afin ⊕A∞ and GLr(A) := GLr(A)fin × GLr(A)∞ according to their finite and infinite parts. For any g = (g fin : g∞) = (gv; gσ) ∈ GLr(A), define the injective morphism i(g) := i(g∞) : F r → A by (f) 7→ (f ; gσ · f). Let F (g) := Im ( i(g) ) and set

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemann-Roch Theorem, Stability and New Zeta Functions for Number Fields

In this paper, we introduce new non-abelian zeta functions for number fields and study their basic properties. Recall that for number fields, we have the classical Dedekind zeta functions. These functions are usually called abelian, since, following Artin, they are associated to one dimensional representations of Galois groups; moreover, following Tate and Iwasawa, they may be constructed as in...

متن کامل

Constructions of Non-Abelian Zeta Functions for Curves

In this paper, we initiate a geometrically oriented study of local and global non-abelian zeta functions for curves. This consists of two parts: construction and justification. For the construction, we first use moduli spaces of semi-stable bundles to introduce a new type of zeta functions for curves defined over finite fields. Then, we prove that these new zeta functions are indeed rational an...

متن کامل

New Non-Abelian Zeta Functions for Curves over Finite Fields

In this paper, we introduce and study two new types of non-abelian zeta functions for curves over finite fields, which are defined by using (moduli spaces of) semi-stable vector bundles and non-stable bundles. A Riemann-Weil type hypothesis is formulated for zeta functions associated to semi-stable bundles, which we think is more canonical than the other one. All this is motivated by (and hence...

متن کامل

Stability and Arithmetic

Stability plays a central role in arithmetic. In this article, we explain some basic ideas and present certain constructions for such studies. There are two aspects: namely, general Class Field Theories for Riemann surfaces using semistable parabolic bundles & for p-adic number fields using what we call semi-stable filtered (φ,N;ω)-modules; and non-abelian zeta functions for function fields ove...

متن کامل

Non-Abelian L-Functions For Number Fields

In this paper we introduce non-abelian zeta functions and more generally non-abelian L-functions for number fields, based on geo-arithmetical cohomology, geo-arithmetical truncation and Langlands’ theory of Eisenstein series. More precisely, in Chapter I, we start with a new yet natural geo-arithmetical cohomology and a geo-arithmetical stability in order to define genuine non-abelian zeta func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002